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Chapter 23 - EMPIRICAL MODELS 

 

 

Standard plots give the first order interpretation of SANS data. Precise models give a 

more detailed approach at obtaining results. Precise molecular models are however not 

always available or too complex to use. An intermediate approach consists in using 

empirical models that reproduce the main trends observed in the SANS data. Some of 

these models are described here. 

 

 

1. THE CORRELATION LENGTH MODEL 

 

Oftentimes when the scattering intensity I(Q) is a decreasing function with Q, it is 

modeled using the following functional form: 

 

 
 

B
Q1

C
)Q(I

m



 .      (1) 

 

Here C and B are (Q-independent) constants obtained for I(Q0) = C + B and 

I(Q ) = B,  is a correlation length and m is a Porod exponent. Note that when m = 

2, this functional form becomes the familiar Lorentzian function. The Fourier transform 

of a Lorentzian function corresponds to correlations dying out as exp(-r/)/r. The 

correlation length  is large for systems that are highly correlated like polymers and gels. 

For example,  is equal to the entanglement distance for a semi-dilute polymer solution 

and it is equal to the end-to-end distance for very dilute polymers. Note that the low-Q 

limit of this empirical form reproduces the Guinier law only when m = 2.  

 

A figure shows SANS data from 4 % (g/g) solution of poly(ethylene oxide) or PEO for 

short of Mw = 41,500 g/mol in D2O at a temperature of 20 oC (Hammouda et al, 2004). 

Fit to the correlation length model gave the following parameters: C = 0.52 cm-1,  = 

17.47 Å, m = 1.93 and B = 0.069 cm-1. The fit is good except for the very low-Q points 

where statistics are poor. The correlation length  gives a good estimate of the average 

entanglement length for this semi-dilute polymer solution. The Porod exponent m points 

to a “mass fractal” for dissolved polymer chains close to the theta condition. The fractal 

exponent for chains in a good solvent is m = 5/3 and that for chains in theta condition is 

m = 2. The theta condition is defined when the monomer-solvent, monomer-monomer 

and solvent-solvent molecular interactions are comparable.  
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Figure 1: SANS data from 4 % solution of PEO (Mw = 41,500 g/mol) in D2O at 20 oC 

temperature and fit to the correlation length model.  

 

2. THE MODIFIED CORRELATION LENGTH MODEL 

 

In some cases where there is a low-Q power law behavior, the correlation length model is 

model to incorporate a “stretching” feature in the low-Q mass fractal structure. 
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Here also  is a characteristic length and m is a high-Q Porod exponent. Parameter s is a 

“stretching” factor (s = 0 for isotropic structure and s = 1 for fully stretched mass fractal 

(think network) structure. Note that when m = 2 and s = 0, this functional form becomes 

the Lorentzien and  is the correlation length (1/e-folding length in r-space).  

 

SANS data and fit to the correlation length model are included for a POSS  (generation 3) 

dendrimer in d-THF solution at 100 mg/ml mass fraction and ambient temperature (25 
oC). Fit results yielded the following parameters s = 0.68 and  = 14.51 (Yuan et al, 

2016).  
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Figure 2: SANS data and fit to the modified correlation length model for a POSS 

dendrimer (POSS65-PEG392) in d-THF at 100 mg/ml mass fraction and ambient 

temperature (25 oC).  

 

3. THE BROAD PEAK MODEL 

 

Many SANS spectra are characterized by a broad peak even though they are from 

amorphous soft materials. The d-spacing corresponding to the broad peak is a 

characteristic distance between the scattering inhomogeneities (such as in lamellar, 

cylindrical, or spherical morphologies or for bicontinuous structures). The following 

simple functional form reproduces the broad peak feature: 
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Here the peak position is related to the d-spacing as Q0 = 2/d0. Soft systems that show a 

SANS peak include copolymers, polyelectrolytes, multiphase systems, layered structures, 

etc.  

 

A figure shows SANS data from 4 % poly(lysine) polyelectrolyte solution in D2O at 25 
oC temperature. Poly(lysine) is a poly(amino acid). Fit to the broad peak model gave the 

following parameters: C = 0.075 cm-1,  = 13.10 Å, Q0 = 0.099 Å-1, m = 1.05 and B = 

0.064 cm-1. Here again, the fit is good except for the low-Q points where statistics are 
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poor. The d-spacing is d0 = 2/Q0 = 63.47 Å. This is an average inter-distance between 

charged polyelectrolyte domains.  
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Figure 3: SANS data from 4 % poly(lysine) poly(amino acid) solution in D2O at 25 oC 

temperature and fit to the broad peak model.  

 

 

4. THE TEUBNER-STREY MODEL 

 

The Teubner-Strey model (Teubner-Strey, 1987) was originally introduced to represent 

the structure of micellar systems. These are characterized by a peak representing inter-

micellar interactions. This model assumes a pair correlation function of the form: 
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Here  is a correlation length (length beyond which correlations die out) and d is a d-

spacing (characteristic of a domain size or periodicity). Recall that the coherent 

macroscopic scattering cross section is given by: 
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 is the sample volume fraction, VP is the scattering “particle” volume, 2 is the contrast 

factor, P(Q) is the form factor and SI(Q) is the structure factor. Performing this 

integration yields: 
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The functional form for the scattering intensity can therefore be presented in the form: 
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B is a Q-independent incoherent scattering background. The various parameters a2, c1 and 

c2 are defined as: 
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These are considered as fitting parameters. The correlation length  and the d-spacing d 

can be expressed as: 
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A factor 221a ca4cf   is defined to represent the amphiphile “strength” which 

dictates the microstructure. For example, the ordered lamellar phase corresponds to fa = -

1 while the disordered phase corresponds to fa = 1.  
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Consider SANS data from 10 % P85 Pluronic (triblock copolymer of PEO-PPO-PEO) 

measured in D2O at 60 oC (temperature for which the micelles are well formed). Fits of 

the SANS data to the Teubner-Strey model yields the following fitting results.  

 

 a2 = 0.038       (10) 

 c1 = -51.23 

 c2 = 24,929 

 B = 0.118.  

 

Note that for the functional form to produce a peak, parameter c1 has to be negative. 

These parameters give the following value for the two characteristic lengths: 

 

  = 96 Å       (11) 

 d = 186.6 Å. 

 

Adding a constant incoherent level B, the scattering intensity (coherent and incoherent 

contributions) are Bd)Q(d)Q(I  . 
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Figure 4: SANS data from 10 % P85 Pluronic in D2O at 60 oC plotted along with the fit 

to the Teubner-Strey model.  
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Figure 5: The pair correlation function (r) for the Teubner-Strey model.  

 

Note that a peaked behavior in I(Q) results in a pair correlation function (r) going 

negative then positive. This is referred to as the “correlation hole” effect. This happens in 

block copolymers, in polyelectrolytes and in concentrated systems.  

 

The Teubner-Strey model applies to concentrated solutions of particles (spheres, 

cylinders, etc) and to the bicontinuous structure. It does not do well for lamellar systems 

and for other highly ordered morphologies (for example, ordered diblock copolymers). It 

misses the higher order oscillations completely. Moreover, the Teubner-Strey model was 

developed for water/oil/surfactant ternary mixtures in the micelle-formation region. 

Using it for polymer/copolymer mixtures requires some adjustments.  

 

 

5. THE DEBYE-BUECHE MODEL 

 

The Debye-Bueche model is used to describe scattering from phase-separated (two-

phase) systems. Here also correlations are characterized by an e-folding length . The 

pair correlation function is give by (Debye-Bueche, 1949): 
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The scattering cross section is obtained by taking the Fourier transform to obtain: 
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The prefactor can be expressed in terms of the volume fraction and contrast factor 2 

as: 

  

 328C  .      (14) 

 

The Debye-Bueche model is obtained as a special case of the Teubner-Strey model for 

very large d-spacing (d>>).  

 

 

6. THE GUINIER-POROD MODEL 

 

An empirical Guinier-Porod model is useful for analyzing SANS data (Hammouda, 

2010). The scattering intensity is given by the two contributions: 
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Note that the incoherent scattering has been added as a constant (Q-independent) term. 

Imposing that the values of the Guinier and Porod terms and their slopes (derivatives) be 

continuous at a value Q1 yields the following relationships: 
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The Guinier form is used for 1QQ   and the Porod form is used for 1QQ  . Note that 

the value of Q1 does not have to be set; it is calculated internally using Eq. 2. This model 

is general and should apply in the entire range of Porod parameters. It is completely 

empirical. 
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Figure 6: SANS data and fit to the Guinier-Porod model for 0.5% P85/d-water at 50 oC 

where spherical micelles are formed. Note that the high-Q background has been excluded 

from the fit. The fitting region is delimited by arrows.  

 

This model is generalized to account for asymmetric scattering objects (such as rods or 

lamellae) as follows:  

 

 1

2
g

2

s
QQ  for  

s3

RQ
exp

Q

G
)Q(P 


















    (17) 

1m
QQ  for  B

Q

D
)Q(P  . 

 

This is based on the generalized Guinier law for such elongated objects (Glatter-Kratky, 

1982). The same scaling factor G has been kept even though it has different units. For 3D 

globular objects (such as spheres), s = 0 and one recovers the previous results. For 2D 

symmetry (such as for rods) s = 1 and for 1D symmetry (such as for lamellae or platelets) 

s = 2. The dimensionality parameter corresponds to 3-s.  

 

Applying the same continuity of the Guinier and Porod functions and their derivatives 

yields to the generalized Guinier-Porod model yields: 
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This empirical model is used to analyze SANS data from a Pluronic P85 which consists 

of the following block sequence EO26PO40EO26 where EO and PO represent ethylene 

oxide and propylene oxide monomers respectively. A 0.5 % P85/d-water is known to 

form micelles upon heating. It forms spherical micelles at 50 oC, cylindrical micelles at 

70 oC and lamellar micelles at 90 oC.  
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Figure 7: Fit of the generalized Guinier-Porod model to the SANS data from 0.5% P85/d-

water at 70 oC where cylindrical micelles are formed.  

 

Nonlinear least squares fit yields the following parameters for the scale factor G, 

dimensionality parameter 3-s, the radius of gyration Rg and the Porod exponent m.  

 

 G = 0.32       (19) 
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 3-s = 2.06 

 Rg = 37.1 Å 

 m = 4.82.  

 

Note that this single model can fit SANS data from spherical micelles (s = 0), cylindrical 

micelles (s = 1) and lamellar micelles (s =2) as well as intermediate structures.  
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QUESTIONS 

 

1. What are the three main methods used to analyze SANS data? 

2. What is referred to as the Ornstein Zernike functional form? What parameter can be 

obtained from a fit to that form? 

3. What is the meaning of a peak in SANS data (at Q0 for example)? 

4. What type of scattering does the Teubner-Strey model apply to? 

5. What are the main parameters for the Guinier-Porod model for elongated scattering 

objects?  

 

 

ANSWERS 

 

1. The three main ways used to analyze SANS data are: (1) standard plots (linear plots of 

functions of I(Q) vs functions of Q), (2) non-linear least squares fits to reasonable models 
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including empirical models and (3) molecularly realistic complex methods for particle 

shape reconstruction and molecular simulation.  

2. The Ornstein-Zernike functional form is a Lorentzian. A correlation length can be 

obtained.  

3. A peak in SANS data (at Q0) means that there is a structure with a characteristic repeat 

distance d = 2/Q0.  

4. The Teubner-Strey model applies to scattering data with a peak and that decay as 1/Q4 

at high Q. These are concentrated systems with inter-particle separation distance 

comparable to particle size or to bicontinuous structures.  

5. Data fitting to the Guinier-Porod model yields an intercept G, a radius of gyration Rg, a 

Porod exponent m and a dimensionality factor for elongated scattering objects 3-s. s=0 

for spherical symmetry, s=1 for rods and s=2 for lamellae.  

 


